Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Sci ; 134(3)2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33526472

RESUMO

PA28γ (also known as PSME3), a nuclear activator of the 20S proteasome, is involved in the degradation of several proteins regulating cell growth and proliferation and in the dynamics of various nuclear bodies, but its precise cellular functions remain unclear. Here, using a quantitative FLIM-FRET based microscopy assay monitoring close proximity between nucleosomes in living human cells, we show that PA28γ controls chromatin compaction. We find that its depletion induces a decompaction of pericentromeric heterochromatin, which is similar to what is observed upon the knockdown of HP1ß (also known as CBX1), a key factor of the heterochromatin structure. We show that PA28γ is present at HP1ß-containing repetitive DNA sequences abundant in heterochromatin and, importantly, that HP1ß on its own is unable to drive chromatin compaction without the presence of PA28γ. At the molecular level, we show that this novel function of PA28γ is independent of its stable interaction with the 20S proteasome, and most likely depends on its ability to maintain appropriate levels of H3K9me3 and H4K20me3, histone modifications that are involved in heterochromatin formation. Overall, our results implicate PA28γ as a key factor involved in the regulation of the higher order structure of chromatin.


Assuntos
Cromatina , Complexo de Endopeptidases do Proteassoma , Autoantígenos , Cromatina/genética , Homólogo 5 da Proteína Cromobox , Heterocromatina/genética , Humanos , Complexo de Endopeptidases do Proteassoma/genética
2.
Proc Natl Acad Sci U S A ; 115(28): E6477-E6486, 2018 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-29934401

RESUMO

PA28γ is a nuclear activator of the 20S proteasome involved in the regulation of several essential cellular processes, such as cell proliferation, apoptosis, nuclear dynamics, and cellular stress response. Unlike the 19S regulator of the proteasome, which specifically recognizes ubiquitylated proteins, PA28γ promotes the degradation of several substrates by the proteasome in an ATP- and ubiquitin-independent manner. However, its exact mechanisms of action are unclear and likely involve additional partners that remain to be identified. Here we report the identification of a cofactor of PA28γ, PIP30/FAM192A. PIP30 binds directly and specifically via its C-terminal end and in an interaction stabilized by casein kinase 2 phosphorylation to both free and 20S proteasome-associated PA28γ. Its recruitment to proteasome-containing complexes depends on PA28γ and its expression increases the association of PA28γ with the 20S proteasome in cells. Further dissection of its possible roles shows that PIP30 alters PA28γ-dependent activation of peptide degradation by the 20S proteasome in vitro and negatively controls in cells the presence of PA28γ in Cajal bodies by inhibition of its association with the key Cajal body component coilin. Taken together, our data show that PIP30 deeply affects PA28γ interactions with cellular proteins, including the 20S proteasome, demonstrating that it is an important regulator of PA28γ in cells and thus a new player in the control of the multiple functions of the proteasome within the nucleus.


Assuntos
Autoantígenos/metabolismo , Núcleo Celular/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas/metabolismo , Autoantígenos/genética , Núcleo Celular/genética , Células HeLa , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Ligação Proteica , Domínios Proteicos , Proteínas/genética
3.
Methods Mol Biol ; 1262: 215-38, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25555584

RESUMO

Determining the proteome of a nuclear body is a crucial step toward understanding its function; however, it is extremely challenging to obtain pure nuclear body preparations. Moreover, many nuclear proteins dynamically associate with multiple bodies and subnuclear compartments, confounding analysis. We have found that a more practical approach is to carry out affinity purification of nuclear body sub-complexes via the use of tagged nuclear-body-specific marker proteins. Here we describe in detail the method to identify new nuclear body protein sub-complexes through SILAC (stable isotope labeling by amino acids in culture)-based affinity purification followed by quantitative mass spectrometry.


Assuntos
Espectrometria de Massas/métodos , Proteínas Nucleares/isolamento & purificação , Proteômica/métodos , Linhagem Celular , Células HeLa , Humanos , Corpos de Inclusão Intranuclear/metabolismo , Marcação por Isótopo/métodos
4.
J Cell Biol ; 207(4): 463-80, 2014 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-25404746

RESUMO

In vitro, assembly of box C/D small nucleolar ribonucleoproteins (snoRNPs) involves the sequential recruitment of core proteins to snoRNAs. In vivo, however, assembly factors are required (NUFIP, BCD1, and the HSP90-R2TP complex), and it is unknown whether a similar sequential scheme applies. In this paper, we describe systematic quantitative stable isotope labeling by amino acids in cell culture proteomic experiments and the crystal structure of the core protein Snu13p/15.5K bound to a fragment of the assembly factor Rsa1p/NUFIP. This revealed several unexpected features: (a) the existence of a protein-only pre-snoRNP complex containing five assembly factors and two core proteins, 15.5K and Nop58; (b) the characterization of ZNHIT3, which is present in the protein-only complex but gets released upon binding to C/D snoRNAs; (c) the dynamics of the R2TP complex, which appears to load/unload RuvBL AAA(+) adenosine triphosphatase from pre-snoRNPs; and (d) a potential mechanism for preventing premature activation of snoRNP catalytic activity. These data provide a framework for understanding the assembly of box C/D snoRNPs.


Assuntos
Proteínas Nucleares/química , Ribonucleoproteínas Nucleares Pequenas/química , Ribonucleoproteínas Nucleolares Pequenas/metabolismo , ATPases Associadas a Diversas Atividades Celulares , Sequência de Aminoácidos , Sítios de Ligação , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Cristalografia por Raios X , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células HEK293 , Proteínas de Choque Térmico HSP90/metabolismo , Células HeLa , Humanos , Interações Hidrofóbicas e Hidrofílicas , Fator 6 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Ligação Proteica , Proteômica/métodos , Proteínas Proto-Oncogênicas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ribonucleases/metabolismo , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Saccharomyces cerevisiae/genética , Alinhamento de Sequência , Fatores de Transcrição
5.
RNA Biol ; 9(2): 148-54, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22418846

RESUMO

HSP90 (Heat Shock Protein 90) is an essential chaperone involved in the last folding steps of client proteins. It has many clients, and these are often recognized through specific adaptors. Recently, the conserved R2TP complex was identified as a key HSP90 co-chaperone. Current evidences indicate that the HSP90/R2TP system assembles multi-molecular protein complexes. Strikingly, these comprise basic machineries of gene expression: (1) nuclear RNA polymerases; (2) the snoRNPs, essential to produce ribosomes; and (3) mTOR Complex 1 and 2, which control translational activity and cell growth. Another important substrate is the telomerase RNP, required for continuous cell proliferation. We discuss here the assembly of RNA polymerases in bacteria and eukaryotes, the role of HSP90/R2TP in this process and in the assembly of snoRNPs and the PIKK family of TORC1 kinase. Finally, we speculate on the roles of R2TP as a master regulator of cell growth under normal or pathological conditions.


Assuntos
Regulação da Expressão Gênica , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas Nucleares/metabolismo , Proliferação de Células , Modelos Biológicos , Chaperonas Moleculares/metabolismo , Complexos Multiproteicos/metabolismo , Ligação Proteica , RNA Polimerase II/metabolismo , Ribonucleoproteínas Nucleolares Pequenas/metabolismo
6.
Chromosoma ; 120(5): 481-99, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21698343

RESUMO

The nucleolus is the subnuclear organelle responsible for ribosome subunit biogenesis and can also act as a stress sensor. It forms around clusters of ribosomal DNA (rDNA) and is mainly organised in three subcompartments, i.e. fibrillar centre, dense fibrillar component and granular component. Here, we describe the localisation of 21 protein factors to an intranucleolar region different to these main subcompartments, called the intranucleolar body (INB). These factors include proteins involved in DNA maintenance, protein turnover, RNA metabolism, chromatin organisation and the post-translational modifiers SUMO1 and SUMO2/3. Increase in the size and number of INBs is promoted by specific types of DNA damage and depends on the functional integrity of the nucleolus. INBs are abundant in nucleoli of unstressed cells during S phase and localise in close proximity to rDNA with heterochromatic features. The data suggest the INB is linked with regulation of rDNA transcription and/or maintenance of rDNA.


Assuntos
Nucléolo Celular/genética , DNA Ribossômico/genética , Animais , Bovinos , Linhagem Celular , Nucléolo Celular/metabolismo , DNA Ribossômico/metabolismo , Humanos , Transporte Proteico , Proteínas/genética , Proteínas/metabolismo , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , Pele/citologia , Pele/metabolismo
7.
EMBO J ; 30(11): 2205-18, 2011 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-21522132

RESUMO

Transport of C/D snoRNPs to nucleoli involves nuclear export factors. In particular, CRM1 binds nascent snoRNPs, but its precise role remains unknown. We show here that both CRM1 and nucleocytoplasmic trafficking are required to transport snoRNPs to nucleoli, but the snoRNPs do not transit through the cytoplasm. Instead, CRM1 controls the composition of nucleoplasmic pre-snoRNP complexes. We observed that Tgs1 long form (Tgs1 LF), the long isoform of the cap hypermethylase, contains a leucine-rich nuclear export signal, shuttles in a CRM1-dependent manner, and binds to the nucleolar localization signal (NoLS) of the core snoRNP protein Nop58. In vitro data indicate that CRM1 binds Tgs1 LF and promotes its dissociation from Nop58 NoLS, and immunoprecipitation experiments from cells indicate that the association of Tgs1 LF with snoRNPs increases upon CRM1 inhibition. Thus, CRM1 appears to promote nucleolar transport of snoRNPs by removing Tgs1 LF from the Nop58 NoLS. Microarray/IP data show that this occurs on most snoRNPs, from both C/D and H/ACA families, and on the telomerase RNA. Hence, CRM1 provides a general molecular link between nuclear events and nucleocytoplasmic trafficking.


Assuntos
Núcleo Celular/metabolismo , Carioferinas/metabolismo , RNA Nucleolar Pequeno/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Ribonucleoproteínas Nucleolares Pequenas/metabolismo , Transporte Ativo do Núcleo Celular , Linhagem Celular , Humanos , Metiltransferases/metabolismo , Proteínas Nucleares/metabolismo , Ligação Proteica
8.
Proteomics ; 11(6): 1153-9, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21365760

RESUMO

Immuno-precipitation (IP) experiments using MS provide a sensitive and accurate way of characterising protein complexes and their response to regulatory mechanisms. Differences in stoichiometry can be determined as well as the reliable identification of specific binding partners. The quality control of IP and protein interaction studies has its basis in the biology that is being observed. Is that unusual protein identification a genuine novelty, or an experimental irregularity? Antibodies and the solid matrices used in these techniques isolate not only the target protein and its specific interaction partners but also many non-specific 'contaminants' requiring a structured analysis strategy. These methodological developments and the speed and accuracy of MS machines, which has been increasing consistently in the last 5 years, have expanded the number of proteins identified and complexity of analysis. The European Science Foundation's Frontiers in Functional Genomics programme 'Quality Control in Proteomics' Workshop provided a forum for disseminating knowledge and experience on this subject. Our aim in this technical brief is to outline clearly, for the scientists wanting to carry out this kind of experiment, and recommend what, in our experience, are the best potential ways to design an IP experiment, to help identify possible pitfalls, discuss important controls and outline how to manage and analyse the large amount of data generated. Detailed experimental methodologies have been referenced but not described in the form of protocols.


Assuntos
Imunoprecipitação/métodos , Espectrometria de Massas/métodos , Proteômica/métodos , Interpretação Estatística de Dados , Humanos , Imunoprecipitação/normas , Imunoprecipitação/estatística & dados numéricos , Espectrometria de Massas/normas , Espectrometria de Massas/estatística & dados numéricos , Mapeamento de Interação de Proteínas/estatística & dados numéricos , Proteínas/isolamento & purificação , Proteômica/normas , Proteômica/estatística & dados numéricos , Controle de Qualidade
9.
Mol Cell ; 40(2): 216-27, 2010 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-20965417

RESUMO

Cells typically respond quickly to stress, altering their metabolism to compensate. In mammalian cells, stress signaling usually leads to either cell-cycle arrest or apoptosis, depending on the severity of the insult and the ability of the cell to recover. Stress also often leads to reorganization of nuclear architecture, reflecting the simultaneous inhibition of major nuclear pathways (e.g., replication and transcription) and activation of specific stress responses (e.g., DNA repair). In this review, we focus on how two nuclear organelles, the nucleolus and the Cajal body, respond to stress. The nucleolus senses stress and is a central hub for coordinating the stress response. We review nucleolar function in the stress-induced regulation of p53 and the specific changes in nucleolar morphology and composition that occur upon stress. Crosstalk between nucleoli and CBs is also discussed in the context of stress responses.


Assuntos
Nucléolo Celular/metabolismo , Núcleo Celular/metabolismo , Transdução de Sinais , Estresse Fisiológico/fisiologia , Animais , Corpos Enovelados/metabolismo , Reparo do DNA/fisiologia , Humanos , Modelos Biológicos , Proteína Supressora de Tumor p53/fisiologia
10.
Mol Cell ; 39(6): 912-924, 2010 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-20864038

RESUMO

RNA polymerases are key multisubunit cellular enzymes. Microscopy studies indicated that RNA polymerase I assembles near its promoter. However, the mechanism by which RNA polymerase II is assembled from its 12 subunits remains unclear. We show here that RNA polymerase II subunits Rpb1 and Rpb3 accumulate in the cytoplasm when assembly is prevented and that nuclear import of Rpb1 requires the presence of all subunits. Using MS-based quantitative proteomics, we characterized assembly intermediates. These included a cytoplasmic complex containing subunits Rpb1 and Rpb8 associated with the HSP90 cochaperone hSpagh (RPAP3) and the R2TP/Prefoldin-like complex. Remarkably, HSP90 activity stabilized incompletely assembled Rpb1 in the cytoplasm. Our data indicate that RNA polymerase II is built in the cytoplasm and reveal quality-control mechanisms that link HSP90 to the nuclear import of fully assembled enzymes. hSpagh also bound the free RPA194 subunit of RNA polymerase I, suggesting a general role in assembling RNA polymerases.


Assuntos
Proteínas de Transporte/metabolismo , Citoplasma/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Chaperonas Moleculares/metabolismo , Complexos Multiproteicos/metabolismo , Multimerização Proteica/fisiologia , RNA Polimerase II/metabolismo , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Transporte Ativo do Núcleo Celular/fisiologia , Alfa-Amanitina/farmacologia , Proteínas Reguladoras de Apoptose , Linhagem Celular Tumoral , Genes Reporter/genética , HIV-1/genética , Humanos , Complexos Multiproteicos/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , Ligação Proteica/fisiologia , Mapeamento de Interação de Proteínas/métodos , Multimerização Proteica/efeitos dos fármacos , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteômica , RNA Polimerase I/metabolismo , RNA Polimerase II/genética , RNA Interferente Pequeno
11.
Mol Cell Proteomics ; 9(5): 861-79, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20023298

RESUMO

The reliable identification of protein interaction partners and how such interactions change in response to physiological or pathological perturbations is a key goal in most areas of cell biology. Stable isotope labeling with amino acids in cell culture (SILAC)-based mass spectrometry has been shown to provide a powerful strategy for characterizing protein complexes and identifying specific interactions. Here, we show how SILAC can be combined with computational methods drawn from the business intelligence field for multidimensional data analysis to improve the discrimination between specific and nonspecific protein associations and to analyze dynamic protein complexes. A strategy is shown for developing a protein frequency library (PFL) that improves on previous use of static "bead proteomes." The PFL annotates the frequency of detection in co-immunoprecipitation and pulldown experiments for all proteins in the human proteome. It can provide a flexible and objective filter for discriminating between contaminants and specifically bound proteins and can be used to normalize data values and facilitate comparisons between data obtained in separate experiments. The PFL is a dynamic tool that can be filtered for specific experimental parameters to generate a customized library. It will be continuously updated as data from each new experiment are added to the library, thereby progressively enhancing its utility. The application of the PFL to pulldown experiments is especially helpful in identifying either lower abundance or less tightly bound specific components of protein complexes that are otherwise lost among the large, nonspecific background.


Assuntos
Biblioteca de Peptídeos , Mapeamento de Interação de Proteínas/métodos , Linhagem Celular Tumoral , Bases de Dados de Proteínas , Humanos , Marcação por Isótopo , Modelos Biológicos , Complexos Multiproteicos/metabolismo , Ligação Proteica , Subunidades Proteicas/metabolismo , RNA Polimerase II/metabolismo , Reprodutibilidade dos Testes
12.
J Cell Biol ; 183(2): 223-39, 2008 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-18936248

RESUMO

The identification of interaction partners in protein complexes is a major goal in cell biology. Here we present a reliable affinity purification strategy to identify specific interactors that combines quantitative SILAC-based mass spectrometry with characterization of common contaminants binding to affinity matrices (bead proteomes). This strategy can be applied to affinity purification of either tagged fusion protein complexes or endogenous protein complexes, illustrated here using the well-characterized SMN complex as a model. GFP is used as the tag of choice because it shows minimal nonspecific binding to mammalian cell proteins, can be quantitatively depleted from cell extracts, and allows the integration of biochemical protein interaction data with in vivo measurements using fluorescence microscopy. Proteins binding nonspecifically to the most commonly used affinity matrices were determined using quantitative mass spectrometry, revealing important differences that affect experimental design. These data provide a specificity filter to distinguish specific protein binding partners in both quantitative and nonquantitative pull-down and immunoprecipitation experiments.


Assuntos
Espectrometria de Massas , Microesferas , Mapeamento de Interação de Proteínas/métodos , Proteoma/análise , Sequência de Aminoácidos , Western Blotting , Bases de Dados de Proteínas , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Imunoprecipitação , Marcação por Isótopo , Dados de Sequência Molecular , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Ligação Proteica , Proteoma/química , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Reprodutibilidade dos Testes , Sefarose , Ubiquitina Tiolesterase/química , Ubiquitina Tiolesterase/metabolismo
13.
J Cell Biol ; 180(3): 579-95, 2008 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-18268104

RESUMO

RNA-binding proteins of the L7Ae family are at the heart of many essential ribonucleoproteins (RNPs), including box C/D and H/ACA small nucleolar RNPs, U4 small nuclear RNP, telomerase, and messenger RNPs coding for selenoproteins. In this study, we show that Nufip and its yeast homologue Rsa1 are key components of the machinery that assembles these RNPs. We observed that Rsa1 and Nufip bind several L7Ae proteins and tether them to other core proteins in the immature particles. Surprisingly, Rsa1 and Nufip also link assembling RNPs with the AAA + adenosine triphosphatases hRvb1 and hRvb2 and with the Hsp90 chaperone through two conserved adaptors, Tah1/hSpagh and Pih1. Inhibition of Hsp90 in human cells prevents the accumulation of U3, U4, and telomerase RNAs and decreases the levels of newly synthesized hNop58, hNHP2, 15.5K, and SBP2. Thus, Hsp90 may control the folding of these proteins during the formation of new RNPs. This suggests that Hsp90 functions as a master regulator of cell proliferation by allowing simultaneous control of cell signaling and cell growth.


Assuntos
Proteínas de Choque Térmico HSP90/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo L/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células , Sequência Conservada/genética , DNA Helicases/genética , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Evolução Molecular , Proteínas de Choque Térmico HSP90/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo L/genética , Chaperonas Moleculares/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ligação Proteica/fisiologia , Dobramento de Proteína , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Ribossômicas , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais/fisiologia , Fatores de Transcrição
14.
Biol Cell ; 100(6): 343-54, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18076379

RESUMO

BACKGROUND INFORMATION: The CBK1 gene of Saccharomyces cerevisiae encodes a protein kinase that is a member of the NDR (nuclear Dbf2-related) family of protein kinases, which are involved in morphogenesis and cell proliferation. Previous studies have shown that deletion of CBK1 leads to a loss of polarity and the formation of large aggregates of cells. This aggregation phenotype is due to the loss of the daughter cell-specific accumulation of the transcription factor Ace2p, which is responsible for the transcription of genes whose products are necessary for the final separation of the mother and the daughter at the end of cell division. RESULTS: We show that the daughter cell-specific localization of Ace2p does not occur via a specific localization of the ACE2 mRNA and that, in vivo, the transcription of CTS1, one of the principal targets of Ace2p, is daughter cell-specific. We have shown that extragenic suppressors of the Deltacbk1 aggregation phenotype are located in the nuclear exportin CRM1 and ACE2. These mutations disrupt the interaction of Ace2p and Crm1p, thus impairing Ace2p export and resulting in the accumulation of the protein in both mother and daughter cell nuclei. CONCLUSIONS: We propose that in the daughter cell nucleus Cbk1p phosphorylates the Ace2p nuclear export signal, and that this phosphorylation blocks the export of Ace2p via Crm1p, thus promoting the daughter cell-specific nuclear accumulation of Ace2p.


Assuntos
Núcleo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Carioferinas/genética , Mutação , Receptores Citoplasmáticos e Nucleares/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Transporte Ativo do Núcleo Celular , Divisão Celular , Núcleo Celular/genética , Quitinases/genética , Proteínas de Ligação a DNA/análise , Proteínas de Ligação a DNA/genética , Proteínas Fúngicas/análise , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Carioferinas/metabolismo , Proteínas Serina-Treonina Quinases , Transporte Proteico , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteínas Repressoras/análise , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/análise , Proteínas de Saccharomyces cerevisiae/genética , Especificidade da Espécie , Fatores de Transcrição/análise , Fatores de Transcrição/genética
15.
Mol Cell Biol ; 27(19): 6782-93, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17636026

RESUMO

The box C/D small nucleolar RNPs (snoRNPs) are essential for the processing and modification of rRNA. The core box C/D proteins are restructured during human U3 box C/D snoRNP biogenesis; however, the molecular basis of this is unclear. Here we show that the U8 snoRNP is also restructured, suggesting that this may occur with all box C/D snoRNPs. We have characterized four novel human biogenesis factors (BCD1, NOP17, NUFIP, and TAF9) which, along with the ATPases TIP48 and TIP49, are likely to be involved in the formation of the pre-snoRNP. We have analyzed the in vitro protein-protein interactions between the assembly factors and core box C/D proteins. Surprisingly, this revealed few interactions between the individual core box C/D proteins. However, the novel biogenesis factors and TIP48 and TIP49 interacted with one or more of the core box C/D proteins, implying that they mediate the assembly of the pre-snoRNP. Consistent with this, we show that NUFIP bridges interactions between the core box C/D proteins in a partially reconstituted pre-snoRNP. Restructuring of the core complex probably reflects the conversion of the pre-snoRNP, where core protein-protein interactions are maintained by the bridging biogenesis factors, to the mature snoRNP.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Transporte/metabolismo , DNA Helicases/metabolismo , Proteínas Nucleares/metabolismo , Precursores de RNA/metabolismo , Ribonucleoproteínas Nucleolares Pequenas/metabolismo , Adenosina Trifosfatases/genética , Animais , Proteínas de Transporte/genética , Linhagem Celular , Nucléolo Celular/genética , Nucléolo Celular/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , DNA Helicases/genética , Humanos , Fator 6 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos , Complexos Multiproteicos , Proteínas Nucleares/genética , Ligação Proteica , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Precursores de RNA/genética , RNA Interferente Pequeno/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Ribonucleoproteínas Nucleares Pequenas/genética , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Ribonucleoproteínas Nucleolares Pequenas/genética , Fatores Associados à Proteína de Ligação a TATA/genética , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Fator de Transcrição TFIID/genética , Fator de Transcrição TFIID/metabolismo
16.
J Cell Biol ; 175(3): 401-13, 2006 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-17088425

RESUMO

The morphology and composition of subnuclear organelles, such as Cajal bodies (CBs), nucleoli, and other nuclear bodies, is dynamic and can change in response to a variety of cell stimuli, including stress. We show that UV-C irradiation disrupts CBs and alters the distribution of a specific subset of CB components. The effect of UV-C on CBs differs from previously reported effects of transcription inhibitors. We demonstrate that the mechanism underlying the response of CBs to UV-C is mediated, at least in part, by PA28gamma (proteasome activator subunit gamma). The presence of PA28gamma in coilin-containing complexes is increased by UV-C. Overexpression of PA28gamma, in the absence of UV-C treatment, provokes a similar redistribution of the same subset of CB components that respond to UV-C. RNA interference-mediated knockdown of PA28gamma attenuates the nuclear disruption caused by UV-C. These data demonstrate that CBs are specific nuclear targets of cellular stress-response pathways and identify PA28gamma as a novel regulator of CB integrity.


Assuntos
Autoantígenos/metabolismo , Núcleo Celular/efeitos da radiação , Corpos Enovelados/efeitos da radiação , Proteínas Nucleares/efeitos da radiação , Complexo de Endopeptidases do Proteassoma/metabolismo , Raios Ultravioleta , Animais , Autoantígenos/efeitos da radiação , Células COS , Núcleo Celular/metabolismo , Chlorocebus aethiops , Corpos Enovelados/metabolismo , Corpos Enovelados/ultraestrutura , Células HeLa , Humanos , Complexos Multiproteicos/efeitos da radiação , Proteínas Nucleares/metabolismo , Complexo de Endopeptidases do Proteassoma/efeitos da radiação , Transporte Proteico/efeitos da radiação , Transfecção , Regulação para Cima
17.
J Mol Biol ; 354(2): 330-9, 2005 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-16253274

RESUMO

Packaging of MLV genomes requires four cis-acting stem-loops. Stem-loops A and B are self-complementary and bind Gag in their dimeric form, while the C and D elements mediate loop-loop interactions that facilitate RNA dimerization. Packaging also requires nuclear export of viral genomes, and their cytoplasmic transport toward the plasma membrane. For MLV, this is mediated by Gag and Env, and occurs on endosomal vesicles. Here, we report that MLV Psi acts at several steps during the transport of genomic RNAs. First, deletion of stem-loop B or C leads to the accumulation of genomic RNAs in the nucleus, suggesting that these elements are involved in export. Second, in chronically infected cells, mutation of the C and D loops impairs endosomal transport. This suggests that RNA dimerization is essential for vesicular transport, consistent with its proposed requirement for Gag binding. Surprisingly, deletion of stem-loop A blocks vesicular transport, whereas removal of stem-loop B has no effects. This suggests that stem-loop A has unique functions in packaging, not predicted from previous in vitro analyses. Finally, in packaging cells that do not express any Psi-containing RNA, endosomal RNA transport becomes sequence-independent. This non-specific activity of Gag likely promotes packaging of cellular mRNAs.


Assuntos
Genoma Viral , Vírus da Leucemia Murina de Moloney/genética , Vírus da Leucemia Murina de Moloney/metabolismo , RNA Viral/metabolismo , Montagem de Vírus , Sequência de Bases , Transporte Biológico , Citoplasma , Dimerização , Produtos do Gene env/fisiologia , Produtos do Gene gag/fisiologia , Dados de Sequência Molecular , Vírus da Leucemia Murina de Moloney/química , Mutação , Conformação de Ácido Nucleico , RNA Viral/química , RNA Viral/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Deleção de Sequência , Transdução de Sinais
18.
Mol Cell ; 16(5): 777-87, 2004 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-15574332

RESUMO

To better understand intranuclear-targeting mechanisms, we have studied the transport of U3 snoRNA in human cells. Surprisingly, we found that PHAX, the snRNA export adaptor, is highly enriched in complexes containing m7G-capped U3 precursors. In contrast, the export receptor CRM1 is predominantly bound to TMG-capped U3 species. In agreement, PHAX does not export m7G-capped U3 precursors because their caps become hypermethylated in the nucleus. Inactivation of PHAX and CRM1 shows that U3 first requires PHAX to reach Cajal bodies, and then CRM1 to be routed from there to nucleoli. Furthermore, PHAX also binds the precursors of U8 and U13 box C/D snoRNAs and telomerase RNA. PHAX was previously shown to discriminate between small versus large RNAs during export. Our data indicate that the role of PHAX in determining the identity of small RNAs extends to nonexported species, and this appears critical to promote their transport within the nucleus.


Assuntos
Nucléolo Celular/metabolismo , Carioferinas/fisiologia , Proteínas de Transporte Nucleocitoplasmático/fisiologia , Fosfoproteínas/fisiologia , RNA Nucleolar Pequeno/química , Receptores Citoplasmáticos e Nucleares/fisiologia , Motivos de Aminoácidos , Transporte Biológico , Técnicas de Cultura de Células , Linhagem Celular , Núcleo Celular/metabolismo , Corpos Enovelados/metabolismo , Metilação de DNA , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Imunoprecipitação , Hibridização In Situ , Microscopia de Fluorescência , Plasmídeos/metabolismo , RNA/química , RNA/metabolismo , RNA Nucleolar Pequeno/metabolismo , Ribonucleoproteínas Nucleolares Pequenas/metabolismo , Telomerase/metabolismo , Transfecção
19.
Biochimie ; 84(8): 805-13, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12457567

RESUMO

Despite recent advances, the mechanisms of RNA movements and targeting within the nucleus are still mysterious. While diffusion appears to play a crucial role in nuclear dynamics and RNA transport, some data argue for a model in which diffusion is controlled, at least in part, by the organization of the nucleus in well-defined compartments. Much of the recent progress is based on imaging technologies, and this review will first present them in some detail. We will then summarize studies that analyzed nuclear movements of both polyadenylated RNA and box C/D snoRNP. Indeed, this latter model has already brought a number of interesting results. We will finally present some of our original results on box C/D snoRNA transport.


Assuntos
Núcleo Celular/metabolismo , RNA/metabolismo , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/metabolismo , Genes Reporter , Células HeLa , Humanos , Processamento de Imagem Assistida por Computador/métodos , Microscopia de Fluorescência/métodos , Fotodegradação , Proteínas de Ligação a RNA/metabolismo , Proteínas Recombinantes de Fusão/química , Espectrometria de Fluorescência/métodos
20.
Mol Cell Biol ; 22(22): 7769-79, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12391146

RESUMO

Cyclin D1, the regulatory subunit for mid-G(1) cyclin-dependent kinases, controls the expression of numerous cell cycle genes. A cyclic AMP-responsive element (CRE), located upstream of the cyclin D1 mRNA start site, integrates mitogenic signals that target the CRE-binding factor CREB, which can recruit the transcriptional coactivator CREB-binding protein (CBP). We describe an alternative mechanism for CREB-driven cyclin D1 induction that involves the ubiquitous POU domain protein Oct-1. In the breast cancer cell line MCF-7, overexpression of Oct-1 or its POU domain strongly increases transcriptional activation of cyclin D1 and GAL4 reporter genes that is specifically dependent upon CREB but independent of Oct-1 DNA binding. Gel retardation and chromatin immunoprecipitation assays confirm that POU forms a complex with CREB bound to the cyclin D1 CRE. In solution, CREB interaction with POU requires the CREB Q2 domain and, notably, occurs with CREB that is not phosphorylated on Ser 133. Accordingly, Oct-1 also potently enhances transcriptional activation mediated by a Ser133Ala CREB mutant. Oct-1/CREB synergy is not diminished by the adenovirus E1A 12S protein, a repressor of CBP coactivator function. In contrast, E1A strongly represses CBP-enhanced transactivation by CREB phosphorylated on Ser 133. Our observation that Oct-1 potentiates CREB-dependent cyclin D1 transcriptional activity independently of Ser 133 phosphorylation and E1A-sensitive coactivator function offers a new paradigm for the regulation of cyclin D1 induction by proliferative signals.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Ciclina D1/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Neoplasias da Mama , Proteína de Ligação a CREB , Ciclina D1/metabolismo , Genes Reporter , Fator C1 de Célula Hospedeira , Humanos , Fator 1 de Transcrição de Octâmero , Fosfoproteínas/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transcrição Gênica , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...